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Stability and independence of the shifts 
of finitely many refinable functions 

Thomas A. Hogan 

1. Introduction 

In this paper, we provide a characterization of the stability and linear independence 
of the shifts of finitely many compactly supported refinable functions $ C L2(H). The 
characterization is in terms of the refinement mask. The nature of these results leads us to 
a question involving the "length" of the space generated by these functions. Some notes 
on this topic are also provided. 

We begin with some notation used throughout this paper. The symbols IN and Z+ 

denote the set of natural numbers and non-negative integers respectively. We also use 

TT := [0 .. 2TT) 

frequently, but with the understanding that any reference to a function / defined on the 
half-open interval TT also refers to the 27r-periodization of /, 

f(x + 2jir) := f(x) for every x € TT, j € TL 

and vice versa. For any set S, we denote by P(S), the set of all a € CS satisfying 

1/2 

And we denote by L2(H) the set of all measurable functions / : IR -¥ C satisfying 

||/||L2:={^I/W|2^}       <OO, 

and equipped with the usual inner product 

(/,£>:= /  f(x)g(x)dx. 

A finite set $ C L2(IR) is said to have stable shifts if there exist positive constants 
c\ and C2 such that 

cilMI* < IIE £ «*üX--i)IU» < <*llf 



for any sequence a <E ^2($ x 2Z) (it is often said that $ provides a Riesz basis (for its 
closed linear span) in this case); a compactly supported finite set $ C L2(IR) is said to have 

linearly independent shifts if the map 

is one-to-one on C 
In [JM1], Jia and Micchelli gave necessary and sufficient conditions for the linear 

independence of the shifts of a finite compactly supported set $ C L2(IR). They showed 
that $ has linearly independent shifts if and only if the sequences 

(1.1) (?(£ + 2J7r)) fae*) 

are linearly independent for every f € C. In [JM2], moreover, they showed that a finite 
compactly supported set $ C L2QR) has stable shifts if and only if the sequences in (1.1) 
are linearly independent for every ( 6 E. In this paper, we are concerned with the stability 
and independence of the shifts of refutable functions. 

A compactly supported finite set $ C L2(JR) is said to be refinable if ($ is not 
identically zero and) there exists a finitely supported sequence 

a:Ei->C*x* 

satisfying 

$ = Y, «0')$(2 -i)=   EE a*,*UM2 • -J) ) 

Equivalently, $ is refinable if 

$(2w) = A{e-iwß{uj) for all u € C, 

where A :— (A^j,)^^ and 

^.*(*):=5£«*.*0V        (*€C\0). 

Unless stated otherwise, whenever we refer to a refinable $ with (refinement) mask 

A, we mean that 

A = (a<£,v> )^,,i/,g* 

is a matrix of trigonometric polynomials; that 1 is an eigenvalue of A(0) and a right 
1-eigenvector v is specified, i.e., 

A(Q)v = v^0] 



and that $ C L2(H) is a compactly supported solution to the refinement equation 

(1.2) $(2-) = A$;        $(0) = v. 

The notions of stability and linear independence of the shifts of refinable functions 
are important in many areas including subdivision, finite element analyses, approximation 
from shift-invariant spaces, and wavelets. And most recently, they have proved to be im- 
portant in the study of what are now being referred to as multiwavelets. Multiwavelets 
have been studied by Donovan, Geronimo, Hardin, Kessler, and Massopust beginning with 
[HKM], in which continuous scaling functions $ were provided. Then in [GHM], arbitrar- 
ily smooth scaling functions were constructed including a pair with orthonormal shifts, and 
these scaling functions were then used to construct compactly supported symmetric/anti- 
symmetric orthonormal multiwavelets in [DGHM], Multiwavelets have also been con- 
structed independently by Goodman and Lee. In [GL], they dealt with Riesz bases and 
dual bases for the set S° and its orthogonal complement in S1, where S° was a space 
of spline functions on IR with multiple knots on 2Z (see also [GLT]). [SS] provides an 
alternative pair of piecewise linear multiwavelets. 

As with wavelets, it seems important to understand the properties of multiwavelets in 
terms of the refinement mask of a refinable function set <£. Already much work has been 
done in this area. Approximation orders of refinable function sets have been characterized 
in [HSS]. This characterization appeared independently in [P], which also featured a 
factorization of the mask. This factorization has already been put to use in [CDP] to 
study the regularity or smoothness of refinable function sets. All of these results were 
arrived at under the assumption that the shifts of the refinable set be stable or independent. 
Yet none of these papers provided a means for testing the mask to determine stability or 
independence. 

In Section 2, we provide a characterisation of stability and linear independence in 
terms of the mask. This however brings up another issue which does not appear when 
dealing with a single refinable function. The issue concerns the notion which de Boor, 
DeVore, and Ron refer to in [BDR] as length. A necessary condition for a set $ to have 
stable shifts is that $ be a minimally generating set. This unfortunately is not a condition 
which is easily characterised in terms of the mask. For this reason, Section 3 is devoted to 
notes on the length of a refinable space and how it depends on the mask. 

2. Stability and independence 

2.1. General 

This section deals with $ C L2(IR) which satisfy len5($) = #$, where 

lenS($) 

So($) 

= min{#* : S(tf) = S($) }; 

= the L2-closure of 5o($); and 

= the set of all finite linear combinations 

of integer translates of all the <f> € $. 



The results of [BDR] imply that for any compactly supported finite set $ C L2(JR) with 
lenS($) = #$, the sequences in (1.1) are linearly independent for almost every £ G C. If 
lenSJ*) < #$, on the other hand, the sequences were shown to be linearly dependent for 
almost every ( G C. Evidently, if len$ < #$, then $ does not have stable shifts. The 
main results of this section characterize stability and linear independence of a refinable set 
$ in terms of the refinement mask A under the assumption that lenS($) = #$. Then, 
we complete the analysis by providing, in Section 3, necessary and sufficient conditions for 

len 5($) = #$ in terms of the mask A. 
Before stating our main results, we provide some additional definitions. For a given 

integer m > 2, we say that a point u G IR is m-cyclic in T? if 2mu = u ^ 0 in TT; i.e., if 
u) i 22Lir, while 2mu - u G 27Ln. Equivalently, a; € IR is m-cyclic in TT if and only if 

2 fin 
OJ = ~ 7 

for some fj, G 2Z\(2m - \)7L. It follows that e~*w G C is a primitive odd root of unity if 
and only if UJ is cyclic, i.e. is m-cyclic in TT for some m. We point out that if a; is m-cyclic 
in TT, then so is 2eu> for any I G 2Z+. Also, if w is cyclic, then u> + n is acyclic, i.e. is not 
m-cyclic in TT for any integer m. Finally, it was shown in [H: pp. 10-11] that, if u> is 
m-cyclic in TT for some integer m > 2, then for any j'eS, 

(2.1) u + 2jir = 2mnu + 2mn-kv-K 

for some n G IN, k G {0, 1, ..., m - 1}, and v G TL\2TL (see also [JW: p. 1123]). 
As in [H], we say that a 27r-periodic function / : C -4 C has a ?r-periodic zero 

in IR (resp. C) if there exists z G IR (resp. C) such that f(z) = f(z + n) = 0; and a 
contaminating zero if there exists an integer m > 2 and u which is m-cyclic in TT, such 

that 
f(2ku + IT) = 0 for all k G {0, 1, ..., m - 1}. 

We also define, for any k, n G 7Z, 

An<k:=   H   A(2i.):=A(2n-1-)A(2n-2-)---A(2k+1-), 

with the understanding that the (empty) product represents the $ x $ identity matrix 

when n — 1 < k + 1. 
Lastly, for A G C   , we define 

A$ := V^ \^(j>    and    XA := I ^ A^a^ 



2.2. Statement of main results 

(2.2)Theorem. Suppose $ is a solution to the refinement equation (1.2) and lenS($) = 
#$. Then $ has stable (resp. linearly independent) shifts if and only if for every A € C   \0, 

(i) if A$(0) = 0, then there exists ne7L+ so that XAn(0)A(ir) ± 0; 
(ii) if\A{sjj) — 0 for some u € IR (resp. LO e C), then \A(u + ir) ^ 0; and 

(in) for any integer ra > 2 and any a; € IR which is m-cyclic in Tf, there exists n € IN and 
k € {0, 1, ..., m — 1} so that 

A>tmn,itH>l(2fca; + 7r)^0. 

As stated in Section 2.1, if $ has stable shifts then len5'($) = #$. This provides the 
following necessary conditions. 

(2.3)Corollary.  Suppose $ is a solution to the refinement equation (1.2). If$ has stable 
(resp. linearly independent) shifts, then for every A € C   \0, 
(i) if A$(0) = 0, then there exists n <E 2Z+ so that \An(0)A(ir) ^ 0; 

(ii) if\A(u)) = 0 for some u € IR (resp. u e C), then XA(u> + n) ^ 0; and 
(Hi) for any integer m>2 and any a; € IR which is m-cyclic in TT, there exists n € IN and 

k G {0, 1, ..., m — 1} so that 

It should be noted that, in both of the conditions (i) and (iii) of the above theorem 
and corollary, n can be bounded. Specifically, one need only verify condition (i) for n = 
0, 1, ..., #$ — 1; and one need only verify condition (iii) for n = 1, 2, ..., #$. As regards 
condition (i), this is obvious since A is a $ x $ matrix. To see that n can also be bounded 
in condition (iii), we introduce, for given integer m > 2 and w which is m-cyclic in TT, the 
matrix 

M(w) := i„m+m,nm-i(w). 

Since 
tynm   om 

2nm+eu _ 2m+eu = tft _(2m
w - u) € 2E7T 

2m - 1 

for n G IN and ^ = 0, 1, ■ ■ •, m — 1, M(u) is independent of n G IN. Moreover, 

Amn,k{u) = Mn-\u)Am,k("), 

which are spanned already by the cases n = 1, 2, •••,#$ for any particular k. Note also 
that if det A is not identically zero, then m could also be bounded in terms of the number 
(and locations) of zeros of det A. 

We also provide the following sufficient conditions. 



(2.4)Corollary. Suppose $ is a solution to the refinement equation (1.2) and lenS($) = 
#$. If A satisfies the following three conditions, then the shifts of $ are stable (resp. 

linearly independent): 
(i) the matrix ( $(0)    A(ir) ) is full rank; 

(ii) det A has no it-periodic zeros in 1R (resp. C); and 
(Hi) det A has no contaminating zeros. 

At first, the condition (iii) appearing in (2.2)Theorem and (2.3)Corollary may seem 
to be nearly inaccessible. However, if one first tries to apply (2.4)Corollary, and finds that 
the mask does not satisfy the easily checked condition (2.4.iii), then one should begin to 
analyze the (left-)nullspaces of the matrix A at the contaminating zero of det A. Verifying 

condition (2.2.iii) at these points, is then straight-forward. 

2.3. Lemmata 

For a single function 4> € £2(IR), we refer to S{<j)) := S{{</>}) as the principal shift- 
invariant, or PSI space, generated by </>. This terminology is used in the first of the 

following results both of which can be found in [BDR]. 

(2.5)Result. For any compactly supported finite set $ C L2(]R), 5($) is the orthogonal 
sum of finitely many PSI spaces, each generated by a compactly supported function having 

linearly independent shifts. 

(2.6)Result. If the compactly supported finite set $ C L2(JR) has linearly independent 

shifts and tp G S($) is compactly supported, then 

for some finitely supported a £ C 

(2.5)Result guarantees, for any compactly supported finite set $ C L2(TR), the exis- 
tence of a compactly supported set # C L2(IR) having linearly independent shifts for which 
5($) = S($). Then (2.6)Result implies that each </> G $ is a finite linear combination of 
the shifts of the elements of #. In the Fourier domain, this implies the existence of a $ x <£> 
matrix U of trigonometric polynomials satisfying 

$ = [/$. 

If lenS($) = #$, then U is a square matrix. Moreover, since * has linearly independent 
shifts, the sequences (1.1) are linearly dependent at £ if and only if U(() is singular. More 

specifically, for A € C   , 

(2.7) (A$(£ + 2jnj) .      = 0 «=> XU(0 = 0. 

Assuming that len S($) = #$, the sequences (1.1) are linearly independent for almost 
every £ € C. This implies that det U is a non-trivial trigonometric polynomial, which in 



turn implies that the matrix B, of rational trigonometric polynomials, is well-defined by 
the relation 

(2.8) U(2-)B := AU. 

This definition leads to the relation 

U(2-)$(2-) = $(2-) = A<£ = AUV = C/(2-)5$, 

which implies that 

(2.9) $(2-) = 5$ 

almost everywhere. The characterization of 5(#) given in [BDR] then implies that 
\E,(-/2) e S(ty). Since the shifts of \I> are linearly independent, (2.6)Result implies that the 
entries of the matrix B are trigonometric polynomials. Now, an immediate consequence 
of (2.8) is that 

(2.10) An,k{u)U(2k+1u) = U(2nu)Bn,k(u) 

for any wEC and integers n > k + 1. 

2.4. Proof of main results 

Proof of (2.2)Theorem. To see that condition (i) is necessary for $ to have 
independent shifts, note that every element of 2ZZ7r\0 has the form 2n+1(2k + l)ir for some 
n € 2Z-(. and k 6 7L, and that 

$(2n+1(2fc + 1)TT) = An(0)A(7r)$((2fc + 1)TT). 

It is then clear that if A does not satisfy condition (i), then (A$(2J7r) J = 0. Also, if 

A does not satisfy condition (2.2.Ü), then 

A$(2w + 4jw) = \A(u)${u + 2jn) = 0 and 

A<£(2w + 2TT + 4.271-) = AA(w + 7r)$(u> + TT + 2J7r) = 0 for all j € 7L. 

So the sequences (1.1) are linearly dependent at £ = 2u. Of course w G IR => £ € IR. 
Now, if A does not satisfy condition (iii), we show that 

A$ (u + 2J7r) is zero for all j 6 Z). 

Suppose u> is m-cyclic in TT for some integer m > 2 and suppose j G TL is given. Then 
it follows from equation (2.1) that 

A$(w + 2J7r) = A$ (2mnw + 2mn-fci/7r) 

= AAnn,*(u,)$(2fe+1u; + 2I/7r) 

= A«4mn,fc(u,)A(2* + i/7r)$(2fc + I/TT), 



for some n G IN, k G {1, 2, dots, m - 1}, v G 7L\27L. So A$(u> + 2JTT) is zero if condition 
(iii) is not satisfied. 

This completes the proof of necessity. To prove sufficiency, suppose that the shifts 
of $ are dependent. Suppose, moreover, that A satisfies conditions (i) and (ii). We show 
that then (iii) is violated. 

Assuming that the shifts of $ are dependent, (2.7) implies the existence of A G C \0 
and d G TT + iJR so that A17(tf) = 0. We will show that this implies that ß is cyclic. 

Since XU(d) = 0, equation (2.8) implies that 

"g).(|)-»W-g)-o 
and 

\A(^ + *y(^ + ^=\U(d)B(^ + ^=0. 

Condition (ii) then implies that U is singular at either f or f + TT (if the shifts of $ are 
in fact not stable, then d € H). Since det U is a trigonometric polynomial, it has only 
finitely many zeros in TT + zIR, and the arguments used in the proof of [JW: Lemma 1] 
imply that 2md -ße 27L-K for some m > 2. We must still show that t9 ^ 27Ln. 

Suppose XU(0) = 0, then A$(0) = 0 and (i) implies that AAn(0)A(7r) is not zero for 
some n G 7L+. Evidently, 

AAn(0)A(7r)t/(7r) = XU(0)Bn(0)B(n) = 0. 

But this is a contradiction, since 7r is acyclic, so U(TT) is invertible. 
Accepting the existence of the integer m > 2 and the m-cyclic d for which \U(ti) is 

zero, we proceed to prove that this violates condition (iii). 
Since 

omn   I 
2mnu -u> = (2mco - w) G 27L7T, 

2m - 1 

XU(u) = 0 implies that \U {2mnu) = 0. By (2.10) and the 2TT periodicity of U, 

A.4mn,fc(u;)A(2*u; + ir)U(2ku + TT) = \Amn^)U{2k+1u)B{2ku + n) 

= XU{2mnu)Bmn,k(u)B(2ku + TT) 

= 0. 

Since, 2ku + TT is acyclic, U(2ku; + n) is invertible, so 

A^m„,fc(a;)A(2fca; + 7r) = 0 

for every n G IN, k G {0, 1, • • •, m - 1}. D 



Proof of (2.4)Corollary. We first point out that conditions (i) and (ii) clearly 
imply conditions (2.2.i) and (2.2.Ü). Note, then, that it is sufficient to prove the corollary as 
it relates to stability. For, suppose that det A has no ^-periodic zeros in C, then it certainly 
has no ^-periodic zeros in IR. If, moreover, condition (i) is satisfied then (2.2)Theorem 
implies that the sequences (1.1) are independent for all £ € C\IR. If condition (iii) is also 
satisfied, and we accept the stability statement of the corollary, then the shifts of $ must 
in fact be independent. 

So, suppose that (i) and (ii) are satisfied, and that the shifts of $ are not stable. We 
will show that condition (iii) is violated. 

The proof of (2.2)Theorem implies that the matrix U of (2.7) has at least one singu- 
larity, and that all such singularities are at points which are cyclic. Now, we show that for 
any u> which is cyclic, 

,r /~   x      « ( det U (u>) = 0 and 
(2.11) de<^)=°^{detA (" + *) = (>. 

First, equation (2.8) implies that 

A (w + TT) U (W + IT) = U (2w) B {u + IT) = 0. 

And, since w + n is acyclic so U (u + TT) is invertible, this implies that det A (u + TT) = 0. 
Condition (ii) then implies that 

(2.12) detA(u>)/0. 

Next, the definition of B also implies that 

A(u)U{u) = U{2u)B(u) = 0 

which together with (2.12) implies that detU (a>) = 0, proving (2.11). 
Now, if U has a singularity at a point u> which is m-cyclic in IT, then det U(2mw) = 

det U(u>) = 0. Applying (2.11) repeatedly, shows that det A has a contaminating zero.   D 

2.5. Examples 

(2.13)Example. This ßrst example will demonstrate the necessity of the hypothesis 
lenS($) = #$. 

Let v := (1    0 )T and A(u) := Ä{e~iu) where 

(z2-z+2 z+1 

-z2 + z      *±i 

Then 

A(0) = A(1)=(J    7 



satisfies A(0)v = v. Now, det A{z) = {z + l)/2, which means that A is invertible except 
at 7T. Therefore, A satisfies the conditions (ii) and (iii) of (2.4)Corollary. Moreover, 

[$(0)    A(n)] = [v    A(-l)] = (£    _2
2    o) 

is invertible. The mask A satisfies all three conditions of (2.4)Corollary. However, there is 
a solution $ C L2{TR) which satisfies the refinement equation (1.2) for this A, which does 

not have independent (or even stable) shifts. 

2*[0..2) 

Let ,       x 

$:= 

Then 

x[o..i)     *[1..2) 

*M = ( _e-.-^
2

2%.1 
— tu> 

satisfies the refinement equation (1.2). Moreover, 

$ ((2j + 1)TT) = (       4       )   for any j £ 7Z, 
\ (2j+l)w / 

demonstrating that the sequences (1.1) are linearly dependent for £ = n. This implies that 
$ does not have stable shifts. In this case, S($) = S(x[Q 1})- So lenS'($) < #$. D 

(2.14)Example. For this example, let u := (1    1 f and A(u) := ^(e-*") where 

If, for some w € C, AA(w) = 0 then A is a scalar multiple of (e_u" -1). So if 
\A(u) = \A(u + TT) = 0, then A = 0. This implies that A satisfies condition (2.3.Ü). 

Moreover, 

[*(°)    ^)] = (1    -l/22    "l/22) 

is full-rank, so A satisfies condition (2.3.i). 
However, the shifts of $ are not stable, since A does not satisfy condition (2.3.iii). To 

see this, note that ^ is 2-cyclic in TL. Defining z0 := e~inl3, we have 

10 



We also point out that 

/"27r\,/fc27r       \      \Mn-lA(^)A{^-)    iffc = 0,and 

where 

Now, setting A := (z0    — 1), 

"(TMTHG)-»- 
Moreover, AM = A. So 

for k = 0, 1 and any n £ IN.  This violates condition (2.3.iii), so the shifts of $ are not 
stable. 

For completeness, we point out that 

$ = - fXM) 
3 \X[^..2) 

is a solution to the refinement equation (1.2) and indeed its shifts are not stable. 
D 

The above example, in which det A is identically zero, should not lead one to believe 
that this property implies the instability of the shifts of $. A counter-example to such a 
conjecture is provided by 

1 + 2 

A(z) := ( ll*    0 I ,     »:-,„ 
0\ (I 

\    2 

for which 
$ := (        X[o..i) 

*[o..±)     x[i..i) 

satisfying the refinement equation (1.2), has linearly independent shifts. 

(2.15)Example. In this example, we use the results of this section to investigate the 
reßnable functions constructed in [DGHM]. These were actually shown,in [DGHM], to 
have orthonormal shifts. 

Let v := ( \/2    1 )T and A{u) := Ä(e~iu) where 

^ '~ 20 \-l + 9z + 9z2 - zz    -3\/2 + 10V2z - Zy/2z2 

11 



Then $ is defined as the solution to the refinement equation (1.2). It follows that 

detÄ(z) = -±(z + l)\ 

So conditions (ii) and (iii) of (2.4)Corollary are satisfied. Moreover, the matrix 

[$(0)    A(x)] 
y/2   0    4v/2/5 

1     0     -8/5 

is full rank. So (2.4)Corollary implies that the shifts are linearly independent (as long as 
len S($) = 2, which we will show in (3.13)Example). D 

3. Notes on length 

3.1. Background 

A shift-invariant subspace of L2(IR) is a closed linear subspace S of L2(1R) which 
is also closed under shifts, i.e., which, for each <f> e S, also contains <f>(- - j) for every 
integer j E 7L.  A finitely generated shift-invariant, or FSI space, is then a space of 
the form  

S{$) := span{ <f>(- - j) : <f> <= *, j € 2Z } 

for some finite set $ C L2(IR). The cardinality of a smallest generating set for an FSI 
space S is called the length of S. We write 

lenS:=min{#$ : S = 5($) }. 

This terminology and notation is from [BDR]. 
In Section 2, stability and linear independence of the shifts of a finite set of mutually 

refinable functions $ were characterized in terms of the mask under the assumption that 
len5($) = #$, i.e., that the FSI space generated by $ could not be generated by any 
set consisting of fewer elements. However, no means for verifying this assumption by 
investigation of the mask were provided. In this section we give a characterization of this 
assumption in terms of the mask. 

In [BDR], finitely generated shift-invariant subspaces of L2(IR) were characterized as 
follows. For any finite $ C L2(U) and any / 6 L2(1R), f € 5($) if and only if 

(3.1) f=J2T+$ 

for some 27r-periodic functions 7>. They say that $ is a basis for S($) if the functions 
r^ in (3.1) are uniquely determined by /. In this case, the functions r^ were shown to be 
rational trigonometric polynomials. They also prove that every finite set $ C L2(IR) of 
compactly supported functions contains a basis for S($). It follows that for any finite set 

12 



$ C L2(IR) of compactly supported functions, there exists \I> C $ and a $ x * matrix U 
of rational polynomials, so that rankC/ = #^ and 

(3.2) $(w) = ü"(e~iw)$(ü;) for almost every w € H. 

If $ is a basis for S($), then #$ = len S($). It follows that rank U = #* = len £($) 
in (3.2). In fact, for compactly supported $, $ is a basis for 5($) if and only if len $ = #$. 

The necessity of the conditions provided in this section will not require that $ C 
L2(IR). The background we provide here dealing with this more general setting is primarily 
from [HC] and [CDP]. As with $ C L2(JR), we say that the compactly supported finite 
set $ C X>'(IR) is refinable with mask A if A is a $ x $ matrix of trigonometric polynomials, 
v is a given right 1-eigenvector of A(0), and <J> C X>'(1R) is a compactly supported solution 
to 

(3.3) $(2-) = A$;        $(0) = v. 

Evidently, 

s=n^57)?fe) 
for any n € IN. Now, suppose that $ is the only entire function satisfying (3.3) and that 
the limit 

(3.4) rr-Bmn^fe)" 
i=i 

converges uniformly on compact sets. Clearly, T(2-) = Ar and T(0) = $(0). Therefore, V 
must be the Fourier-Laplace transform of $. 

When proving the necessity of the conditions provided in this section, I will assume 
that $ is the only entire function satisfying (3.3). Sufficient conditions for this property 
are provided in [HC] and [CDP]. The following theorem from [CDP] provides sufficient 
conditions for the convergence of (3.4). 

(3.5)Result.  Suppose A is a square matrix of trigonometric polynomials. Suppose that 
v is a right l-eigenvector of A(0), i.e., A(0)v = v ^ 0. Suppose p < 2, where 

p := p(A(0)) := max{ |A| : A(0)u = \u for some u ^ 0 }. 

Tiien the limit (3.4) converges uniformly on compact sets. 

Throughout this section, we use II to denote the set of all polynomials of one vari- 
able with complex coefficients and we use T to denote the field of (univariate) rational 
polynomials with complex coefficients, i.e., 

r-={fl9 ■ /-?en, g?0}. 
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Then, for any set 5, the set 

JF5 := {p : S -+ T : s H- ps} 

is a vector space (over the field J-). 
We interpret any finite subset P of Ts also as a matrix P G FSxP and wee versa; 

and We identify both of these with the linear map 

P : Tp -> .FS : u ■-► Pu := J^ P«j> 

We make no distinction between these three interpretations of P. For such P and any 
2GC, P(Z) C C5, equivalents P(z) G C5xP, equivalently P(z) : CF -> CS denotes P 

evaluated at z. 
When #5 < oo, the subspace PL C 7s is defined for P C JFS by 

>J- j v G J^ : (p,v> := ^P.t>, = 0 Vp G P >. 

That is, Px = kerPT, where 

pT:JFS^fP.^ pTv ._ ((p|t,))j>ep. 

Evidently, rank P +dim P1- = dim^s = #5 whenever #P < oo; and P^ = P whenever 
P is a subspace of J-s. 

We denote by <r, the map which takes any function p defined on C and maps it to the 
function z H+ p{z2). That is, for any function p with domain C, ap also has domain C and 

is defined by the rule 

(ap)(z) := p{z2)    forallzGC. 

Moreover, if P is any set of functions on C, then aP is defined by 

aP := { ap : p G P }. 

Evidently, <rP C II whenever P C II and a(AB) = (CTA)(<TP) whenever AB is well-defined. 

Lastly, for any matrix A of rational trigonometric polynomials, I denote by A the 

matrix of rational polynomials defined by 

Ä(e-iu) = A(u>). 

With these definitions in place, we begin our analysis with a 
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(3.6)Lemma. Suppose #S < oo. Suppose X is a subspace of Ts. Then X has a basis 
U C n5. Moreover, such a basis exists with the property that rank U(z) — #U for every 
z €. C; equivalently, det(UTU) is a non-zero constant. 

Proof. Any basis of X consists of finitely many vectors from Ts. Since #S < oo, 
a basis from IIs may be obtained simply by multiplying by a polynomial which is a common 
multiple of all denominators of a given basis. This proves the first assertion. 

Next we show that such a basis U C IIs, is everywhere of full rank if and only if the 
polynomial p := det(UTU) is a non-zero constant. Clearly, p(z) ^ 0 if and only if U(z) is 
of full rank. Moreover, the polynomial p is a non-zero constant polynomial if and only if 
it never vanishes, hence if and only if U is everywhere of full rank. 

Now, suppose U is a basis for X. Then we can complete U to a basis V =: [U U'] 
for Ts. Clearly, if V is everywhere of full rank, then U is as well. 

Suppose V is not everywhere of full rank. Specifically, suppose 3r € C such that 
det V(r) = 0. Then, det V € (• — r)II. Moreover, since V(r) is not of full rank, there exists 
a € CV C Tv such that V(r)a = 0. Since V C IIs is a basis, Va ^ 0 (i.e., Va is not the 
zero element of ^rS). Therefore, Va G (• - r)II5\0. 

If av ^ 0 for some v € U', then we can replace v in U' with the polynomial vector 
Va/(- — r). This obviously has no effect on the basis U for X, while it reduces the degree 
of det V by one (indeed, det V has been multiplied by av/(- — r)), since det V ^ 0. 

If on the other hand, a\ut = 0, then there is some v € U for which av ^ 0. Again, 
replacing v in U with Va/(- — r), reduces the degree of det V by one. Moreover, although 
we have altered the basis U, the resulting set is still a basis for X, since av ^ 0, while 
a\w =0. D 

3.2. Length of an FSI space 

In this section we provide conditions on the mask A which are sufficient to conclude 
that len$ = #$ under the assumption that $ C L2(IR). These conditions are shown 
to be also necessary if the mask satisfies the hypotheses of (3.5)Result. The assumption 
$ C L2(IR) is not required to conclude the necessity of the conditions. 

In the satement of the following theorem, we assume that A is a square matrix of 
trigonometric polynomials; that 1 is an eigenvalue of A(0); and that v ^ 0 is a right 1- 
eigenvector of A{0). We assume moreover, that $ C L2(JR) is a (compactly supported) 
solution to the refinement equation (3.3). 

(3.7)Theorem. If £ := len5($) < #$, then there exists Pen* with #P = rankP = 
#$ — £, and such that 
(i) PT(1)8(0) = 0, while rankP(l) = #P; and 

(ii) {<JP
T
)ÄP^ = 0. 

Proof. Suppose I := len5'($) < #$. Then there exists * C $, as in (3.2), with 
#^ = £, and such that 

$ = *7(e-'-)§ 

for some U € ^r*x*. Moreover, rankt/ = £. 
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Let PcnHea basis for U^. Then #P = rankP = #$ - I And since PTU = 0, 

PT(1)$(0) = PT(l)U(l)${0) = 0. 

Moreover, by (3.6)Lemma, we may assume that PT(1) is of full rank. 

Also, 

PT(e-i2)AU(e-i-ß = PT(e-i2-)A = Pr(e-2-)$(2.) = (PTC/)(e"i2-)$(2-) = 0, 

again since PTU = 0. Now, * is compactly supported and len5(*) = £ = #*, so * is a 

basis for 5(*). Therefore PT(e-i2)AC/(e-i) = 0. Equivalently, (<xP)TA*7 = 0. Since U 

is of full rank, it is a basis for UL1- = P1, so 

(aP)71^1 = 0. 
D 

To deal with necessity, we drop the assumption that $ C L2(IR). The theorem below 
is valid for general compactly supported distributions. We will not specify precisely what 
is meant by S($) in this case. However, the proof of the theorem below provides, under 

certain assumptions on the mask A, a set \I> satisfying 
(i) #* < #$; 

(ii) ^ is a finite linear combination of the shifts of $; and 
(iii)  $ is a finite linear combination of the shifts of \t. 
Regardless of the definitions of S($) and lenS, it is reasonable to say that points (i), (ii), 

and (iii) imply that lenS($) < #* < #$• 
In the statement of the following theorem, we assume that A satisfies the hypotheses 

of (3.5)Result. That is, we assume that 1 is an eigenvalue of A(0); that v / 0 is a right 

1-eigenvector; and that the spectral radius p(A{0)) < 2. We assume moreover that $ is 

the only entire function satisfying (3.3). 

(3.8)Theorem. If there exists Pen* with rankP = #P and satisfying conditions (i) 

and (ii) of (3.7)Theorem, then lenS($) < #$ - #P. 

Proof. We will provide $ with ## = #$- #P, so that the elements of $ are 
finite linear combinations of the shifts of the elements of # and vice versa. 

By (3.6)Lemma, there exists a basis U C IT* for PL with the properties that U{z) is 
full rank everywhere and det(UTU) is a constant. This second property implies (say by 
Cramer's rule) that ({7T£/)_1, and hence the left inverse 

U-L:={UTU)-lUT, 

of U, also consist of polynomials. Since rank P = #P, #?7 = #$ — #P. 
Now, condition (ii) implies that AP1- C aPL. And since U is a basis for P-1, this 

implies the existence of B € fUxU for which 

ÄU = (aU)B. 
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We claim that B also satisfies the hypotheses of (3.5)Result. 

Evidently, B has trigonometric polynomial entries, since B = (aU~L)AU.   Also, 
<£(0) € PHl) by condition (i), so $(0) = U{l)v for some v € Cu. For this v, 

U(l)B(l)v = A(l)U(l)v = A(1)$(0) = $(0) = U(l)v. 

And since U(l) is of full rank, it follows that 

B(0)v = v. 

Now suppose B(0)u = Xu for some u ^ 0. Then U(l)u ^ 0, while 

A(l)U(l)u = tf(l)£(l)u = AC/(l)u. 

That is, every eigenvalue of 5(0) is also an eigenvalue of A(0). Therefore, 

p(B(0)) < P(A(0)) < 2. 

By (3.5)Result, 

converges uniformly on compact sets. Moreover, T is an entire function satisfying $(0) = 
U{1)T(0), as well as 

U(e-i2-)T(2-) = U{e-i2-)BT = AU^eT^T. 

Since we assumed that $ was the only entire function satisfying (3.3), we must have 

(3.9) $ = tf(e-'-)r. 

Consequently, T = t/~L(e_,')<§. Since (7-L consists of polynomials, this implies that V is 
the Fourier-Laplace transform of some compactly supported set * C V'(JR) which is a finite 
linear combination of the shifts of <f> € $. Then, (3.9) implies that the elements of $ are also 
finite linear combinations of the shifts of the elements of *. Since ## = #U = #$ - #P, 
the proof is complete. d 
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3.3. Two and three functions 

Suppose #$ = 2, then the results of Section 3.2 take the following simpler form, in 
which we also have a bound for degP. As we are assuming that $(0) is not zero, lenS($) 
is either one or two. For $ C L2(fil), the sufficient conditions then simplify to 

(3.10)Corollary. Suppose A =: (aij) is a two-by-two matrix of polynomials. Suppose 
v ^ 0 is a right 1-eigenvector of A(0). Suppose $ C £2(IR) is a solution to the reßnement 
equation (3.3). If lenS($) = 1, then there exist polynomials p\ and p2 satisfying 

,           .         r,            dega2i + degp2 
degpi < max{dega22, ^ ) 

J          /         (A            degai2+degp1 
degp2 < max{degan, ), 

and such that 
(i) pi(l)vi + p2(l)t>2 = 0, while one of pi(l) orp2(l) is non-zero; and 

(H) 

(P1(z*) P^))(an{;\ a"\z\)(P2iz
(\)=o. 

We point out that the bounds on the degrees of p\ and p2 could be replaced with the 
simpler bounds 

f               degan +dega2i   2dega2i + degai2 
degpi < max < dega22, ~z , ^  

f.            dega22+degai2   dega2i + 3dega12 \ 
degp2 < max < degan, , j 

or the even simpler bounds degpk < max^^deg a{j} which, though weaker than the bounds 
in the statement of the theorem, more clearly display that the degrees of p\ and p2 can be 
bounded a priori. 

Proof. It is enough to provide the bounds for degpi and degp2 (the rest follows 
immediately from (3.7)Theorem). We may assume that px and p2 are relatively prime. 
Then condition (ii) implies that 

api divides a22pi — a2\p2, and 

crp2 divides a\\p2 — a12pi. 

The bounds on degpi and degp2 follow. O 

The results of Section 3.2 take a simple form in the case #$ = 3 as well. Now there are 
two possibilities, len S($) = 1 or len 5($) = 2. Note that the three equations in condition 
(ii) of the next two corollaries are inherently redundant. However, since we don't know 
which if any of the pk might be zero, we have no choice. To handle the possibility that 

len5"($) = 1, we offer the 
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(3.11) Corollary. Suppose A =: (a,ij) is a three-by-three matrix of polynomials. Suppose 
v 7^ 0 is a right l-eigenvector of A(0). Suppose $ C L2(IR) is a solution to the refinement 
equation (3.3). If \enS(§) = 1, then there exist polynomials pi, p2 and p3 satisfying 

{,            dega12 + degp2   dega13+degp3 
degpi <max<Megan, ^ ' 2  

fdega2i +degpi                 dega23+degp3 
degp2 <max< ,dega22, ~  

,          ^          f degajji +degpi   dega32 + degp2 
degp3 < max < , , deg a33 

and such that 
(i) p2(l)v3 -P3(l)"2 = P3(l)ui -Pi(l)«3 = Pi(l>2 - P2(l)t>i = 0, while not all of pi(l), 

p2(l), andp3(l) are zero; and 

0 -Ps(22)     p2(z
2)  \   fau{z)    a12(z)    a13(z)\   /Pi(z)\ 

Pz{z2) 0 -Pi(z2) a21(z)    a22(z)    a23{z) p2{z)     =0. 
-p2(z

2)     pi{z2) 0      /   \a31(z)    a32(z)    a33(z) j  \p3{z)) 

Again we point out that the bounds above imply that degp* < maxfjldegajj}. 
Proof.        Assuming, as we may, that the polynomials pi, p2, and p3 are relatively 

prime, condition (ii) implies that 

op\ divides anpi + a\2p2 + ai3p3, 

ap2 divides a2ipi + a22p2 + a23p3, and 

crp3 divides a3ipi + a32p2 + l33p3. 

The bounds given now follow easily. The rest follows from (3.7)Theorem. D 

To handle the possibility that len,S($) = 2, we make the additional assumption that 
det A is not identically zero. For this case, we offer the 

(3.12) Corollary. Suppose A =: (a,j) is a three-by-three matrix of polynomials, for which 

det A is not identically zero. Suppose v ^ 0 is a right l-eigenvector of A(0). Suppose 
$ C L2(IR) is a solution to the refinement equation (3.3). If lenS'($) = 2, then there exist 
polynomials p\, p2, and p3 satisfying degpfc < 2maxiiJ- dega^ for k = 1, 2, and 3, and 
suci that 

(i) pi(l)ui +p2(l)u2 + p3(l)v3 = 0, while one ofpi(l), p2(l), orp3(l) is non-zero; and 

(") 

(a\\{z)    a12(z)    ai3{z) 
a2l{z)    a22(z)    a23(z) )  (   p3(z) 0 -Pl(z) j =0. 
a3i(z)    a32(z)    a33(z) 
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Proof. _ 
Let MA := {mij) be the matrix of cofactors of A. That is, 

m, iji := (-ly+idetioi,?)^^ (ij = 1,2,3). 

Since det A is not identically zero, A is almost everywhere invertible, and 

Mj = (det I)!"1. 

Moreover, degm.j < 2max,'iJ/{degai<j/} for i,j = 1,2,3. 
By (3.7)Theorem, there exists PT =: (pi    Pi    Pz ) such that 

aPTA = uPT 

for some u =: //# € T. This in turn implies that 

9-^AaPT = PTMA. 

As we may assume that pu p2, and p3 are relatively prime and as the elements of MA are 
polynomials, / must divide g det A and, in turn, aPT divides PTMA. This then implies 
that every element of P is of degree less than max;j{deg m^} < 2maxij{deg a,;}. O 

3.4. Example 

(3.13)Example. We complete the analysis of the refinable functions from [DGHM] be- 
gun in (2.15)Example. 

Recall that 

~      _v/2/      6V2 + 6V2Z 16 \ v=(^\ 
{Z)~ 20 \-l + 9z + 9z2-z3    -3y/2 + 10y/2z-3,/2z2J' K1/ 

By (3.10)Corollary, if lenS($) = 1, then there would be polynomials px and p2 satisfying 

(3.14) (M*2)   P2^2))A(,)(_^]))=0 

as well as \/2pi(l) + p2(l) = 0. The bounds provided there for the degrees of these 
polynomials implies that degPl < 2 and degp2 < 1. We use Maple to try to find such Pl 

and p2. We let 
pi(z) =: a0 + aiz + a2z

2 and p2(z) =: b0 + b\Z. 

The following Maple code then sets up these two conditions and attempts to solve for the 

coefficients ao, o-i, °2, &o, &i- 
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> A:=sqrt(2)/20*matrix([[6*sqrt(2)*(l+z),16], 
> [-l+9*z+9*z~2-z~3,   sqrt(2)*(-3+10*z-3*z~2)]]); 

> v:=matrix([[sqrt(2)], [1]]); 

> pl:=a0+al*z+a2*z~2;   p2:=b0+bl*z; 

> sPT:=matrix([[subs(z=z~2,pl),subs(z=z's2,p2)]]); 

> Pperp:=matrix([[p2],[-pl]]); 

> condi:=subs(z=l,evalm(sPT&*v))[1,1]; 

> exprii:=evalm(sPT&*A&*Pperp)[1,1]; 

> condii:=coeffs(collect(exprii,z),z); 

> solve({condi,condii},{a0,al,a2,b0,bl}); 

Maple's response is 
{60 = 0, a2 = 0, 61 = 0, ai = 0, a0 = 0} 

{bi = bu a2 = ~y/2bi, a0 = -ö^> 
ai = °» &o = -&i} 

Corresponding to pi = p2 = 0; and pi = ^(z2 - 1), p2 = z — 1, respectively. However, 
neither of these choices for pi, p2 satisfies the condition that (Pi (1) P2 (1)) be of full rank. 
Therefore, lenS($) 7U. 

It is worth noting that the polynomials pi(^) = ^(1 + z) and p2{z) = 1 satisfy 
condition (3.14). Moreover PT{\) = (pi(l) P2(l)) = (V% 1) has full rank. However, 
PT(l)v = 3 7^ 0. Multiplying p\ and p2 by z — 1 does not effect (3.14) and clearly makes 
PT(l)v = 0. But in this case, PT(l) = (0 0) is not of full rank. So this example also 
illustrates that all three conditions are necessary to conclude that len£>(<I>) < #$. D 
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